SUR - Physics T095

Friday, 13/11/2015
14:00-17:00
WORKFORCE DEVELOPMENT AUTHORITY

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015, TECHNICAL AND PROFESSIONAL TRADES

EXAM TITLE: Physics
 \section*{DURATION: 3hours}
 INSTRUCTIONS:

(PHY)

OPTION: Surveying (SUR)

This paper consists of three sections I, II and III.
Section I: Seventeen (17) compulsory questions. $\mathbf{5 5}$ marks
Section II: Attempt any three (3) out of five questions. $\mathbf{3 0}$ marks
Section III: Attempt any one (1) out of three questions.
15 marks

Every candidate is required to strictly obey the above instructions. Punishment measures will be applied to anyone who ignores these instructions.

Section I. Seventeen (17) Compulsory questions. 55marks

1. State the fundamental physical quantities that are used to derive the following derived physical quantities:
(a) Speed
(b) volume

3marks
02. A Physicist measured the radius of a circular board and found $R=9.0 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$
(a) What is the lower limit of the tolerance interval for this measurement?
(b) What is the higher limit of the tolerance interval for this measurement?

3marks
03. Copy and complete the following table:

Physical quantity	Symbol of SI unit
Length	
Temperature	
Time	
Mass	

4. State three types of equilibrium.

3marks
05. Define and give two (2) examples of fluid.
06. State the Pascal's law (Pascal's principle) of fluid pressure.
07. A mass of 10 g causes a spring to extend 4 cm .
(a) Convert 10 g and 4 cm into kilograms and metres respectively.
(b)Calculate the spring constant k of the spring. Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

4marks
08. Find the hydrostatic pressure on an object which is 5 m below the surface of the lake. Use the density of lake water $\rho=1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

3marks
09. A particle moves as function of time as follows $\mathrm{X}=4 \sin \left(10 \pi t+\frac{\pi}{5}\right)$, where distance is in metres and time is in seconds.
(a) What is the amplitude of this simple harmonic motion?
(b) What is the angular velocity of this motion?
(c) Calculate the period of this motion.

4marks
10. A particle moves for 20 s with a velocity of $3 \mathrm{~m} / \mathrm{s}$ and finally moves with a velocity of $5 \mathrm{~m} / \mathrm{s}$ for next 20 s .
(a) Calculate the travelled distance for each step.
(b) What is the average velocity of the particle?

4marks
11. Consider the following physical situations. Identify whether the indicated force does positive or negative work or no work and explain your choice.
(a) A cable is attached to a bucket and the force of tension is used to pull the bucket out of well.
(b) A breaking system exerts an applied force upon the car to bring it to a stop. 4 marks
12. a) What do you understand by the term pressure in Physics? 1 mark
b) The pressure exerted on a surface is 100 Pa . What is the force exerted vertically on an area of $0.4 \mathrm{~m}^{2}$.

3marks
13. A mass is vibrating in a system in which the restoring constant is $100 \mathrm{~N} / \mathrm{m}$; the amplitude of vibration is 0.200 m . The motion of this system is simple harmonic. Find:
(a) the energy of the system.
(b) the maximum kinetic energy of the system.
(c) the maximum potential energy of the system.

4marks
14. What are two factors on which the time period of the simple pendulum on the earth's surface depends?

2marks
15. If the period of a pendulum on earth is 2 s , what is the length of the pendulum? Take $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

2marks
16. a) Define the term specific heat capacity (specific heat) of a material.
b) The quantity of heat equal to $2 \times 10^{4} \mathrm{~J}$ is added to 2 kg of an unknown metal to cause the temperature change of $50^{\circ} \mathrm{C}$. What is the specific heat capacity (specific heat) of the unknown metal?

3marks
3marks
17. The kinetic energy of rotation of the wheel is 13.5 J . The moment of inertia about the centre is $3 \mathrm{~kg} \mathrm{~m}^{2}$. What is the uniform angular speed of this wheel?

3marks

Section II. Answer any three (3) questions of your choice

 (do not choose more than three questions). 30marks18. Copy the following table and complete the properties of the three states according to some general properties of matter given below.

10marks

Properties	Solid	Liquid	gas
Shape			
Volume			
Density			
Compressibility			

19. (a) (i) I weigh 60 kg . Is this an acceptable statement? Explain.
(ii) What is the relation between 1 N and 1 kg ?
(1mark)
(iii) A and B are two objects with masses 100 kg and 750 g respectively, which object has more inertia?
(iv) How much support force does a table exert on a book that weighs 15 N when the book is placed on the table? Explain your answer.
(b) A force of 10 N is acting on an object of mass 10000 g . What is the acceleration produced on it? is the acceleration of this object?
20. (a) With the aid of four characteristics, differentiate between speed and acceleration.
(b) A car travelling along a straight road at $8.0 \mathrm{~m} / \mathrm{s}$ accelerates to a speed of $15.0 \mathrm{~m} / \mathrm{s}$ in 5.0 s .
(i) Express $15 \mathrm{~m} / \mathrm{s}$ in km / h;
(ii) Determine its acceleration;
(iii) Calculate the distance travelled during this period;
(iv) Does this car speed up? Justify your answer.
21. (a) Describe an elastic pendulum.
(2marks)
(b) (i) A mass is attached to a vertical spring and moves up and down between points A and B. Where is the mass located when its kinetic energy is maximum? Is it at point A, at point B or at midway between A and B ? Use the total mechanical energy of the system to support your answer.
(3marks)
(ii) A mass oscillates on the end of a spring, on both Earth and on the Moon. Where is the period the greatest? Explain your answer on the basis of the expression of the period.
(2marks)
(c) A mass M hangs in equilibrium on a spring. M is made to oscillate about the equilibrium position by pulling it down 10 cm and releasing it. The system executes simple harmonic motion (SHM) with a time period of 2 s .
(i)What is the amplitude of this SHM?
(ii)Determine the frequency at which this SHM is executed.
22. (a) What is meant by the following terms:
(i) Archimedes' principle
(ii) Static fluid
(b) A body is at rest in a fluid. The fluid density is $0.75 \mathrm{~g} / \mathrm{cm}^{3}$ and 0.8 of the body volume $\left(0.8 \mathrm{~V}_{\mathrm{b}}\right)$ is below the fluid surface.
(i) What is the condition for an object to float in a fluid?
(ii) Identify two forces acting on this body.
(iii) Does the body float in the fluid? Explain.
(iv) Using Archimedes' principle, find the density of the body.

Section III. Answer any one (1) question of your choice

(do not choose more than one question). 15marks
23. A physicist heated a block of ice with an electric kettle and plotted the graph of temperature (T) of the system against time (t) as shown below (figure1).

Figure 1
From the graph, answer the questions below:
(a) What is the initial temperature of the block of ice?
(2marks)
(b) On the heating curve diagram provided above, name the different parts of the graph namely $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EF}$ using appropriate terms like: gas only, gas-liquid only, solid only, liquid only, liquid-solid only. (5marks) (c) (i)Identify the processes that take place during the segment BC and DE .
(2marks)
(ii)Why does the temperature remain constant at regions BC and DE ?
(iii)Differentiate evaporation from ebullition.
(iv)What are the temperature values at which the vaporization and fusion
(2marks) occur?
24. A student carried out an experiment to verify Boyle's law using a syringe and obtained the following table.

Pressure $/ \mathrm{kPa}$	Volume $/ 10^{-6} \mathrm{~m}^{3}$
50	8
100	16
200	32
250	40
400	64
500	90

Note that some of the data have been omitted.
(a) (i) State Boyle's law (sometimes called Boyle-Mariotte law) related to ideal gas.
(2marks)
(ii) Copy and complete the table above for an ideal gas and using mathematical formula, explain how you obtain the results.Assume that Boyle's law is respected.
(7marks)
(iii) What experimental factor (thermodynamic parameter) is assumed to be constant in this experiment?
(b) If you have to represent Boyle's law on the graph,
(i) Which variable will be plotted on the graph's vertical axis?
(ii) Which variable will be plotted on the graph's horizontal axis?
(c) The experiment is carried out at 300 K .
(i) Convert 300 K into degree Celsius.
(2marks)
(ii) Which of the following is that temperature closer to?

Room temperature, human body temperature, freezer temperature. (1mark)
25. (a) A fluid of constant density ρ is flowing steadily through the following horizontal tube (figure 2).

Figure 2
(i) Use Bernoulli's equation to name P_{1}, P_{2}, v_{1} and v_{2}
(4marks)
(ii)Compare the physical quantities ν_{1} and ν_{2} and explain your answer.

Use the continuity equation and the figure 2 .
(4marks)
(b) A liquid flows through a pipe (see the figure 2 above) with a diameter of 8 cm at a velocity of $10 \mathrm{~cm} / \mathrm{s}$ then the diameter of the pipe decreases to 5 cm .
(i) Find the cross sectional area of the section1.
(ii) Calculate the cross sectional area of the section 2.
(iii) Use the continuity equation to determine the new velocity v_{2} in m / s of the liquid.

